Loading Icon

Unsupervised learning

Unsupervised learning (UL) is a type of algorithm that learns patterns from untagged data. The hope is that, through mimicry, the machine is forced to build a compact internal representation of its world and then generate imaginative content. In contrast to supervised learning (SL) where data is tagged by a human, e.g. as "car" or "fish" etc, UL exhibits self-organization that captures patterns as neuronal predilections or probability densities. The other levels in the supervision spectrum are reinforcement learning where the machine is given only a numerical performance score as its guidance, and semi-supervised learning where a smaller portion of the data is tagged. Two broad methods in UL are Neural Networks and Probabilistic Methods.

Metrics Summary

Total Publications
Lifetime
4,469
Prior Five Years
2,126
Total Citations
Lifetime
63,919
Prior Five Years
23,000
Total Scholars
Lifetime
8,947
Prior Five Years
8,333

Institutional Rankings

Global (Worldwide)
Show More
National Institutional Rankings

Publications and Citation History

Publications based on Disciplines

Scholars based on Disciplines

Publications based on Fields

Scholars based on Fields

Highly Ranked Scholars™

Lifetime
Prior Five Years

Highly Cited Publications

Lifetime