Loading Icon

Convolutional neural network

In deep learning, a convolutional neural network (CNN, or ConvNet) is a class of deep neural network, most commonly applied to analyze visual imagery. They are also known as shift invariant or space invariant artificial neural networks (SIANN), based on the shared-weight architecture of the convolution kernels or filters that slide along input features and provide translation equivariant responses known as feature maps. Counter-intuitively, most convolutional neural networks are only equivariant, as opposed to invariant, to translation. They have applications in image and video recognition, recommender systems, image classification, image segmentation, medical image analysis, natural language processing, brain-computer interfaces, and financial time series.

Metrics Summary

Total Publications
Lifetime
37,625
Prior Five Years
27,095
Total Citations
Lifetime
586,629
Prior Five Years
424,638
Total Scholars
Lifetime
68,996
Prior Five Years
67,948

Publications and Citation History

Publications based on Disciplines

Scholars based on Disciplines

Publications based on Fields

Scholars based on Fields

Highly Ranked Scholars™

Lifetime
Prior Five Years

Highly Cited Publications

Lifetime