Loading Icon

Dimensionality reduction

Dimensionality reduction, or dimension reduction, is the transformation of data from a high-dimensional space into a low-dimensional space so that the low-dimensional representation retains some meaningful properties of the original data, ideally close to its intrinsic dimension. Working in high-dimensional spaces can be undesirable for many reasons; raw data are often sparse as a consequence of the curse of dimensionality, and analyzing the data is usually computationally intractable. Dimensionality reduction is common in fields that deal with large numbers of observations and/or large numbers of variables, such as signal processing, speech recognition, neuroinformatics, and bioinformatics.

Metrics Summary

Total Publications
Lifetime
7,798
Prior Five Years
2,857
Total Citations
Lifetime
138,726
Prior Five Years
21,480
Total Scholars
Lifetime
13,078
Prior Five Years
11,685

Publications and Citation History

Publications based on Disciplines

Scholars based on Disciplines

Publications based on Fields

Scholars based on Fields

Highly Ranked Scholars™

Lifetime
Prior Five Years

Highly Cited Publications

Lifetime