Loading Icon

Nuclear magnetic resonance

Nuclear magnetic resonance (NMR) is a physical phenomenon in which nuclei in a strong constant magnetic field are perturbed by a weak oscillating magnetic field (in the near field) and respond by producing an electromagnetic signal with a frequency characteristic of the magnetic field at the nucleus. This process occurs near resonance, when the oscillation frequency matches the intrinsic frequency of the nuclei, which depends on the strength of the static magnetic field, the chemical environment, and the magnetic properties of the isotope involved; in practical applications with static magnetic fields up to ca. 20 tesla, the frequency is similar to VHF and UHF television broadcasts (60–1000 MHz). NMR results from specific magnetic properties of certain atomic nuclei. Nuclear magnetic resonance spectroscopy is widely used to determine the structure of organic molecules in solution and study molecular physics and crystals as well as non-crystalline materials. NMR is also routinely used in advanced medical imaging techniques, such as in magnetic resonance imaging (MRI).

Metrics Summary

Total Publications
Prior Five Years
Total Citations
Prior Five Years
Total Scholars
Prior Five Years

Institutional Rankings

Global (Worldwide)
Show More
National Institutional Rankings

Publications and Citation History

Publications based on Disciplines

Scholars based on Disciplines

Publications based on Fields

Scholars based on Fields

Highly Ranked Scholars™

Prior Five Years

Highly Cited Publications